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Abstract

When a new programming language comes out, previous analyses can be ap-
plied to this new language by re-implementing them all. This work proposes
the opposite method, by translating the low-level language of the Java Virtual
Machine into the high-level language that Logic Programming (LP) is, to allow
using all the already well-developed analyses for LP.

The technique used relies on the partial evaluation of a Java bytecode in-
terpreter developed in LP with respect to (an LP representation of) a set of
Java bytecode classes. The residual LP program can then be analyzed by the
state-of-the-art analyzer for (Constraint) Logic Programming — (C)LP. Inter-
estingly, at least for the examples we have studied, it produces very simple LP
representation of the original Java programs by recovering the structure hidden
in the bytecode representation. Reasoning about properties of such residual pro-
grams allows automatically proving some non-trivial properties of Java bytecode
programs like termination and run-time error freeness.

A short version of this work will be presented in August 2006 in Seattle
(USA) at the international workshop on Software Verification and Validation
(which is in conjunction with Federated Logic Conferences (FLoC) 2006,
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Introduction

The technique of abstract interpretation [7] has allowed the development of very
sophisticated global static program analyses which are at the same time auto-
matic, provably correct, and practical. The basic idea of abstract interpretation
is to infer information on programs by interpreting (“running”) them using ab-
stract values rather than concrete ones, thus, obtaining safe approximations
of programs behavior. A classical application of the semantic approximations
produced by an abstract interpreter is to perform program verification.

Verifying programs in the (Constraint) Logic Programming paradigm —
(C)LP — offers many advantages, an important one being the maturity and so-
phistication of the analysis tools available for it. These analyzers are parametric
w.r.t. the so-called abstract domain, which provides a finite representation of
possibly infinite sets of values. Different domains capture different properties of
the program with different levels of precision and at a different computational
cost. This includes error freeness, data structure shape (like pointer sharing),
bounds on data structure sizes, and other variable instantiation properties, as
well as procedure-level properties such as determinacy, termination, non-failure,
and bounds on resource consumption (time or space cost), etc. CiaoPP [14] is
the abstract interpretation-based preprocessor of the Ciao (C)LP system [5]. It
uses modular, incremental abstract interpretation as a fundamental tool to ob-
tain information about programs. The semantic approximations thus produced
have been applied to program verification and optimizations during program
compilation, including transformations such as parallelization and resource us-
age control.

A principal advantage of verifying programs on a source code level is that
complex global properties can be infer for them. However, in certain applications
like within a mobile environment, one may only have the object code available,
since mobile components are typically deployed as bytecode. In general, analy-
sis tools for such low-level languages are unavoidably more complicated than for
high-level languages because they have to cope with complicated and unstruc-
tured control flow. The aim of this work is to provide a practical framework for
Java bytecode verification which exploits the expressiveness, automation and
genericity of the advanced analysis tools for (C)LP. In order to achieve this
goal, we have developed a meta-program implementing the semantic of the Java
Virtual Machine Language (JVML) that can be partially evaluated by CiaoPP
to produce a residual program that can be analyzed by either CiaoPP or another
LP analyzer. The whole verification process is split in three parts.

1. Translation to LP. We use LP as a language for representing and manip-
ulating JVML programs. We have implemented an automatic translator
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2 INTRODUCTION

Parser which, given a set {class1, . . . , classn} of .class files returns an
LP representation P of them in JVMLr (a representative subset of JVML
which will be discussed in detail in Chapter 1). Furthermore, we have also
implemented in LP an interpreter Int , which captures the JVML seman-
tics. In addition, the interpreter computes execution traces, which will be
very useful for reasoning about certain properties.

2. Partial evaluation. We have used an existing partial evaluator for (C)LP
in order to specialize Int with respect to the LP representation P of
{class1, . . . , classn}, as described in 1). As a result, we obtain IP, an
LP residual program which can be seen as a decompiled and translated
version of P into LP.

3. Verification of Java bytecode. The final goal is that the JVML program
can be verified by analyzing the residual program IP obtained in 2) with
state-of-the-art analyzers developed for (C)LP.

The resulting scheme has been incorporated in the CiaoPP preprocessor. The
first chapter is focused on the JVMLr language, its grammar and the resulting
parser, its semantics and the interpreter. The second chapter will then present
the generation of the residual program with partial evaluation and the analysis of
this residual program. The example shown in Figure 2 will be used throughout
this report to show the results of the different parts.
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Figure 1: Java Bytecode Verification using Transformation and Analysis Tools
for (C)LP



4 INTRODUCTION

class ExpFact{
private int _fact;
private int _exp;

public static void main(int base, int exponent, int fact){
ExpFact e = new ExpFact();
int t;
t = ExpFact.exp(base,exponent);
e.setExp(t);
try{

t = ExpFact.fact3(fact);
e.setFact(t);

}catch(java.lang.ArithmeticException ex){}
}

public void setExp(int exp){_exp=exp;}
public int getExp(){return _exp;}

public void setFact(int fact){_fact=fact;}
public int getFact(){return _fact;}

public static int exp(int base, int exponent){
int result=1;
for(int i=exponent;i>0;i--){

result*=base;
}
return result;

}

public static int fact3(int n){
if(n>11) throw(new java.lang.ArithmeticException());
if(n>1) return n*fact2(n-1);
if(n>=0) return 1;
throw(new java.lang.ArithmeticException());

}
}

Figure 2: Java Source Code of the Main Example



Chapter 1

The JVMLr Language

JVML is optimized for speed and compactness of the .class files. Those opti-
mizations are achieve through the use of the whole set of bytecode instruction,
which means that several instructions have very similar semantics, and thought
the use of a constant-pool [19] (a structure present in the .class file which
stores constants, field and method names and descriptors, class names, etc.)
with several levels of indirections. Those optimizations are adapted to exe-
cution but makes the code harder to read and meta-programs like interpreters
and analyzers harder to program and to maintain. JVML also handles some fea-
tures not yet supported by the interpreter we have developed like operations on
floats, doubles and longs, concurrency and static initializations. To formalized
all the simplifications made and to represents JVML in LP, we have specified
the JVMLr language (where we have to chosen to add the subscript r to denote
that it is a reduced version of JVML). In the first section of this chapter, the
grammar of the language and the parser are presented while the second section
presents its dynamic semantics and the interpreter.

In this section and the next one we describe (and give some implementation
details of) the “meta-programming” phase in Figure 1. In particular, this section
presents the elements depicted as Parser and Section 1.2 presents Int .

1.1 A simplified version of the Java Virtual Ma-
chine Language

The input of the verification process is a set of JVML .class files, denoted as
{class1, . . . , classn}, which describe the information of a set of Java classes
(as specified by JVML, see the Java Virtual Machine Specification [19]). Then,
the program named Parser in Figure 1 takes {class1, . . . , classn} and returns
an LP program which contains the information available in the classes and
represents it in the JVMLr language. JVMLr is a representative subset of the
JVML language which is able to handle: classes, interfaces, arrays, objects,
constructors and object initialization, virtual, interface and static invocations,
exceptions, method call to class and instance methods, etc. For simplicity, some
other features such as types as float, double, long and string, concurrency and
tableswitch and lookupswitch instructions are left out of the chosen subset.

5



6 THE JVMLr LANGUAGE

Figure 1.1 shows the formal syntax of JVMLr. In this grammar, words begin-
ning with an uppercase represent non-terminals (except Int, Bool, UnsignedInt
and String, which have the usual meaning), while words in lowercase repre-
sent terminals which could be constants, functor or predicate names in first
order logic. Thus, we can see that a JVMLr program encapsulated in a fact
and consists in a term with program as predicate name, and two lists as ar-
guments, the first one being a list of class terms, and the second one a list
of interface terms. The bytecode instructions are represented separately as a
set of bytecode facts all together inside a same file. In order to differentiate
them, they include both the method and the class which they belong to (see
Example 1 for details). It is interesting to note that a full class term will store
all information relative to the compilation of a Java class (except the bytecode
instructions) as it is specified by the JVMLr, as well as the .class file stores
all information relative to the compilation of a Java class as it is specified by
the JVML.

As notation, we use respectively Prog , JProg , and Classes to denote LP
programs, LP program containing a JVMLr representation, and a the set of all
correct (as specified in the The class file format specification [19]) .class files.

Definition 1 (Parser) We define function Parser : 2Classes → JProg which
takes a set of .class files {class1, . . . , classn} ∈ 2Classes and returns an LP
program P ∈ JProg which is the LP representation of class1 . . . classn.

The implementation of Parser in Ciao [5] reads the .class files byte by byte and
organizes and interprets them as it is specified in [19]. As a result, it produces
an LP program which consists of a set of facts containing the same information
as the original .class files. This set of fact can be devied into 1) a set of
bytecode facts reprensting the bytecode instructions for the methods in all the
involved Java classes and 2) a single program fact obtained by putting together
the class and interface terms which store all required information — except
for the bytecode instructions which appear separately in the aforementioned
facts. While Figure 1.1 gives the formal syntax of the language, Example 1
shows a concrete utilization of it. The differences between JVML and JVMLr

are essentially the two following ones.

1. Bytecode factorization. In order to optimize JVML [19], Sun has dupli-
cated some instructions, like the instruction that puts an integer onto
the stack, to specialized them depending on their arguments. For the
previous instruction, eleven different bytecodes can be used (iconst m1,
iconst 0, iconst 1, iconst 2, iconst 3, iconst 4, iconst 5, bipush,
sipush, ldc, and ldc w). This as well as other duplicated instructions
can be factorized in order to have less instructions without affecting ex-
pressiveness.1 This makes the JVMLr code easier to read (as well as the
traces which will be discussed in Section 1.2) and the interpreter easier to
program and maintain.

2. References resolution. Original JVML instructions very often use indexes
onto the constant-pool [19], which can refer to other indexes into this struc-
ture and which leads to several levels of indirections. Parser removes all

1This allows covering over 200 bytecode instructions of JVML in 54 instructions in JVMLr.
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Program ::= program(program(Classes,Interfaces)).
Classes ::= [ ] | [Class,Classes]
Interfaces ::= [ ] | [Interface,Interfaces]
Class ::= class(ClassName,OptionClassName,SuperInterfaces,Fields,Methods,

final(Bool),public(Bool),abstract(Bool))
Interface ::= interface(InterfaceName,SuperInterfaces,Fields,Methods,

final(Bool),public(Bool),abstract(Bool))
ClassName ::= className(packageName(String),shortClassName(String))
OptionClassName ::= none | ClassName
InterfaceName ::= interfaceName(packageName(String),shortClassName(String))
SuperInterfaces ::= Interfaces
Fields ::= [ ] | [Field,Fields]
Field ::= field(FieldSignature,final(Bool),static(Bool),

Visibility,initialValue(InitialValue))
FieldSignature ::= fieldSignature(FieldName,Type)
Visibility ::= package | protected | private | public
InitialValue ::= undef | null | int(Int)
FieldName ::= fieldName(ClassName,ShortFieldName)
ShortFieldName ::= shortFieldName(String)
Type ::= primitiveType(PrimType) | refType(RefType)
PrimType ::= boolean | byte | short | int
RefType ::= classType(ClassName) | interfaceType(InterfaceName) | arrayType(Type)
Methods ::= [ ] | [ Method,Methods]
Method ::= method(MethodSignature,OptionBytecodeMethod,

final(Bool),static(Bool),Visibility)
MethodSignature ::= methodSignature(MethodName,Parameters,OptionType)
MethodName ::= methodName(ClassName,ShortMethodName)
ShortMethodName ::= shortMethodName(String)
Parameters ::= [ ] | [Type,Parameters]
OptionType ::= none | Type
OptionBytecodeMethod ::= none | bytecodeMethod(StackSize,LocalVarSize,FirstAddress,

methodId(ModuleName,MethodIndex),ExceptionHandlers)
StackSize ::= UnsignedInt
LocalVarSize ::= UnsignedInt
FirstAddress ::= Pc
ModuleName ::= String
MethodIndex ::= UnsignedInt
Instructions ::= [ ] | [Instruction,Instructions]
ExceptionHandlers ::= [ ] | [ExHandler,ExceptionHandlers]
ExceptionHandler ::= exceptionHandler(OptionClassName,StartPc,EndPc,HandlerPc)
StartPc ::= Pc
EndPc ::= Pc
HandlerPc ::= Pc

Bytecode ::= bytecode(ModuleName,Pc,MethodIndex,Instruction,Offset).
Pc ::= UnsignedInt
MethodIndex ::= UnsignedInt
Offset ::= Int
VariableIndex ::= UnsignedInt
Instruction ::= aaload | aastore | aconst null | aload(VariableIndex) | areturn |

arraylength |anewArray(refType(RefType)) | astore(VariableIndex) |
athrow | baload | bastore | checkcast(refType(RefType)) |
const(primitiveType(PrimType),Int) | dup | dup x1| dup x2 |
getfield(FieldSignature) | getstatic(FieldSignature) | goto(Offset) | i2b |
i2s | ibinop(BinOpType) | iaload | iastore | if acmpeq(Offset) |
if acmpne(Offset) | if icmp(Offset,CompType) | if0(Offset,CompType) |
ifnonnull(Offset) | ifnull(Offset) | iinc(VariableIndex,Int)|
iload(VariableIndex) | instanceof(refType(RefType)) |
invokestatic(MethodSignature) | invokevirtual(MethodSignature) |
ireturn | istore(VariableIndex) | multianewarray(refType(RefType)) |
new(ClassName) | newarray(primitiveType(PrimType)) | nop |
pop | pop2 | putfield(FieldSignature) |
putstatic(FieldSignature) | return | saload | sastore | swap |ineg

BinOpType ::= addInt | andInt | divInt | mulInt | orInt | remInt |
shlInt | shrInt | subInt | xorInt

CompType ::= eqInt | neInt | ltInt | leInt | geInt | gtInt

Figure 1.1: JVMLr Grammar
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bytecode(’ExpFact_class’,0,7,const(primitiveType(int),1),1).
bytecode(’ExpFact_class’,1,7,istore(2),1).
bytecode(’ExpFact_class’,2,7,iload(1),1).
bytecode(’ExpFact_class’,3,7,istore(3),1).
bytecode(’ExpFact_class’,4,7,iload(3),1).
bytecode(’ExpFact_class’,5,7,if0(eqInt,13),3).
bytecode(’ExpFact_class’,8,7,iload(2),1).
bytecode(’ExpFact_class’,9,7,iload(0),1).
bytecode(’ExpFact_class’,10,7,ibinop(mulInt),1).
bytecode(’ExpFact_class’,11,7,istore(2),1).
bytecode(’ExpFact_class’,12,7,iinc(3,-1),3).
bytecode(’ExpFact_class’,15,7,goto(-11),3).
bytecode(’ExpFact_class’,18,7,iload(2),1).
bytecode(’ExpFact_class’,19,7,ireturn,1).

Figure 1.2: Partial output of Parser for exp

references to the constant-pool table in the bytecode instructions by re-
placing them with the complete information. This can be seen as unfolding
steps which could benefit an analyzer’s inference task later.2 Thus, we no
longer need the constant-pool table as all the required data are included
within the JVMLr representation.

Example 1 In Figure 2, we show the Java method exp which computes the
exponential for the parameters base and exponent. The execution of Parser
on this example returns an LP program in the JVMLr language containing all the
information concerning the class to which exp belongs. Due to space limitations,
Figure 1.2 we only show the bytecode facts which correspond to the method exp.
Each bytecode fact is of the form bytecode(ModuleName,Bi,Mi,Inst,L), where
Bi is the index of this instruction in the code array, Mi is the index of the actual
method, Instruction is a term with its “opcode” as functor and its parameters
as arguments, and L is the instruction length, i.e., the number of bytes it uses in
the code array. The ModuleName argument identify the class. This allows to deal
with bytecode instructions coming from different Java classes. It can be noted
that some original instructions have been replaced by their factorized version
(e.g. in the first bytecode fact, const(primitiveType(int),1)) corresponds in
JVML to the iconst 1 opcode without arguments).

1.2 Dynamic Semantics of JVMLr and Interpre-
tation

The formal JVML specification chosen as a based to implement the semantics
of JVMLr in an interpreter is Bicolano [24]. Bicolano is developed within the
Mobius [3] european project, which aims to verify the Java programs for mobile
phones. Bicolano is written with the Coq Proof Assistant [2] — this allows
checking that the specification is consistent and also proving properties on the
behavior of some programs — and describes a superset3 of JVMLr.

In the specification, a state is modeled by a 3-tuple, which can either be
a normal state 〈 Heap, Frame, StackFrame 〉 or an exception state 〈 Heap,

2It should be noted that Mix can automatically perform this unfolding step. But we prefer
to have a translator with reference resolution which can be used independently of our current
approach (e.g., by a Java bytecode analyzer written in Ciao directly).

3It also includes the tableswitch and lookupswitch instructions.
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Operation
Push byte
Format

bipush
byte

Forms
bipush = 16 (0x10)

Operand Stack
... ⇒ ..., value

Description
The immediate byte is sign-extended to an int value. That value
is pushed onto the operand stack.

Figure 1.3: Sun specification of bipush

ExceptionFrame, StackFrame 〉, and represents the machine’s state where:

• Heap represents the content of the heap,

• Frame represents the execution state of the current Method,

• ExceptionFrame represents the execution state of the current method
when an exception has been thrown and not yet caught, and

• StackFrame is a list of Frames corresponding to the call stack.

Each Frame is of the form 〈 Method, PC, OperandStack, LocalV ar 〉 and con-
tains the stack of operands OperandStack and the values of the local vari-
ables LocalV ar at the program point PC of the method Method. In an
ExceptionFrame, the stack OperandStack is replaced by the address of an
object — which must inherit from the class Exception — in the heap Heap.

The definition of the dynamic semantics is based on the notion of step.

Definition 2 (step) The dynamic semantics of each instruction is specified as
a partial function step : JProg × States → States × Step Names that, given a
program P ∈ JProg and a state S ∈ States, computes the next state S′ ∈ States
and returns the name of the step L ∈ Step Names. For convenience, we write
S

L−→PS′ to denote step(P, S) = (S′, L).

The operational semantics of an instruction is expressed differently in the orig-
inal JVM specification, in Bicolano and in our implementation. The next ex-
ample shows the different specifications for the const instruction, which pushes
onto the stack the value of its parameter.

Example 2 Figure 1.3 is an extract of Sun’s Java Virtual Machine Specifica-
tion that describes the bipush instruction. sipush and iconst <i> instructions
are also described in the JVM Specification and the three of them are very sim-
ilar and have been factorized to the const instruction in JVMLr. The Coq
representation in Bicolano of those three JVM instruction is as follows:
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Inductive step (p:Program) : State.t → State.t → Prop :=
| const step ok: ∀ h m pc pc’ s l sf t z,

instructionAt m pc = Some (Const t z) →
next m pc = Some pc’ →
step p (St h (Fr m pc s l) sf)

(St h (Fr m pc’ (Num (I (iconst z))::s) l) sf)

Below is the Ciao translation of the same instruction:
step(const step ok, Program,

st(H,fr(M,PC,S,L),SF),
st(H,fr(M,PCb,[num(int(Z))|S],L),SF)):-

instructionAt(M,PC,const( T,Z)),
next(M,PC,PCb).

The full implementation of the step relation can be find in Appendix A.
In order to formally define our interpreter, we need to define the following

function which iterates over the steps of the program until obtaining a final
state.

Definition 3 ( T−→
∗
P) Let T−→

∗
P be a relation on States with S

T−→
∗
PS′ if and only

if:

• there exists a sequence of steps L1 to Ln such that S
L1−−→P . . .

Ln−−→P S′,

• there is no state S′′ ∈ States such that S′ L−→PS′′, and

• T = [L1, . . . , Ln], with T ∈ Traces, is the list of the names of the steps.

We can then define two different interpreters. One that takes as only parameters
a program and a list of strings, and starts the execution for the static void
main(java.lang.String[]) method of the first class of the program. This has
been implemented, but we have also defined a more general interpreter which
takes as parameters a program and a method invocation specification that in-
dicates in which method the execution should start from, the corresponding
effective parameters (which will often contain logical variables or partially in-
stantiated terms, which should be interpreted as the set of all their instances)
of the method and a heap. Both interpreters rely on the following Execute
function.

Definition 4 (Execute) Let P ∈ JProg be a program to be executed and S ∈
States be a state. We define the execution of this program as Execute(P, S) =

(S′, T ) with S
T−→

∗
PS′.

The following definition of Int computes, in addition to the return value of
the method called, also the trace which captures the computation history. This
will allow observing a good number of interesting properties about the program.

Definition 5 (Int) Let M be a method invocation specification that contains a
method signature, parameters for the method and a heap. We define a general
interpreter Int(P,M) = (R, T ) with
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• S = initialState(P,M) where initialState builds a state S ∈ States from
the program P and the method invocation specification M ,

• Execute(P, S) = (S′, T ),

• finalState(S′), which checks that S′ is a valid final state, that is to say
that the program counter points to a return instruction and the call stack
is empty, and

• R = result of(S′) is the result of the execution of the method specified by
M (the value on top of the stack of the current frame of S′).

If the state computed by Execute is not a final state, then Int fails. When we
can prove non failure, it means the initial state built from the provided method
invocation specification is guaranteed to be consistent.

This definition of Int returns the trace and the result of the method but
it is straightforward to modify the definitions of Int and Execute (and the
corresponding code) to return less information or to add, for example, the list
of all the states if needed (to prove properties which may require a deeper
inspection of execution states).
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Chapter 2

Transformation and
Analysis of Logic Programs

2.1 Specialization of the Interpreter

Partial evaluation is a semantics-based program optimization technique which
has been deeply investigated within different programming paradigms and ap-
plied to a wide variety of languages. The main purpose of partial evaluation is
to specialize a given program with respect to the static data, i.e., the part of
its input data which is known — hence it is also known as program specializa-
tion. The partially evaluated (or residual) program will be (hopefully) executed
more efficiently since the computations that depend only on the static data are
performed — at partial evaluation time — once and for all.

2.1.1 Basics of Partial Evaluation

In this section, some needed definitions of logic programming presented in [21]
are re-introduced and then partial evaluation of logic programs is formally de-
fined (see [20] for more detailed definitions).

Definition 6 (computation rule) A computation rule R is a function that,
given a goal G =← s1, . . . , sr, . . . , sn with n ≥ 1, returns an atom sr, called the
selected atom, in that goal.

When executing a Prolog program, the selected atom is the one the most at the
left. For partial evaluation, it can be interesting in some cases to “jump” over
some atoms that cannot be evaluated.

Definition 7 (derivation step) Let G = ← s1, . . . , sr, . . . , sn be a goal, R be
a computation rule with R(G) = sr, and C = h ← t1, . . . , tm be a properly
renamed apart clause. G′ is derived from G and C via R if the following
conditions hold:

θ = mgu(sr, h)
G′ =← (s1, . . . , sr−1, t1, . . . , tm, sr+1, . . . , sn)θ

In the following, it’s is denoted by G ;θ G′.

13
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Several derivation steps can give an SLD derivation. An SLD derivation is
a possibly infinite sequence of goals G0, G1, . . . and a sequence θ1, θ2, . . . of
most general unifiers such that Gi ;θi+1 Gi+1. A finite (possibly incomplete)
SLD derivation of goals G0, . . . , Gn and mot general unifiers θ1, . . . , θn with
θ = θ1 . . . θn, is denoted by G0 ;∗

θ Gn. When an atom sr can be unified with
several clauses of P , the derivation step can be non-deterministic. Such SLD
derivations can be organized in SLD trees. The execution of a logic program
corresponds to a traversal of a such tree; it can be either breadth-first in some
cases or more generally depth-first like in the case of Prolog. Partial evaluation
therefore rely on the simplification of those SLD trees.

Definition 8 (resultant of a derivation) Let P be a program, s an atom, t
a conjunction of atoms, and ← s ;∗

θ← t an SLD derivation of the goal ← s in
P that leads to the goal ← t. The resultant of this SLD derivation is the clause
sθ ← t.

Definition 9 (partial evaluation) let P be a logic program, s an atom, and
τ an SLD tree for ← s in P . Let G1, . . . , Gn be (non root) goals in τ chosen so
that each non failing branch of τ contains exactly one of them. Let Ri be the
resultant of the derivation ← s ; Gi. Then the set of clauses {R1, . . . , Rn} is
called a partial evaluation of s in P .
If S = {s1, . . . , sr} is a finite set of atoms, then a partial evaluation of S in P
is the union of partial evaluations of s1, . . . , sr in P .

For a given atom s in a program P , there exists in general infinitely many
different partial evaluation of s in P . This choice is abstracted by the definition
of an unfolding rule.

Definition 10 (unfolding rule) An unfolding rule U is a function which,
given a program P and an atom s, returns exactly one finite set of resultants
that is a partial evaluation of s in P . If S is a finite set of atoms and P a
program, then U(S, P ) denote the union of U(s, P ) for all s ∈ S.

In order to have termination, an abstraction operator is needed. This oper-
ator also ensures independence1 and closedness, two conditions to correctness,
as proved in [20].

Definition 11 (abstraction) Given a finite set of atoms S, an abstraction
operator abstract is a function which returns abstract(S), a finite independent
set of atoms with the same predicates as those in S, such that every atom in S
is an instance of an atom in abstract(S).

The the naive algorithm presented in Figure 2.1 computes the set of atoms
Tout that need to be partially evaluated in order to have a sound partial eval-
uation P ′ = U(Tout, P ) of the program P with respect to a set of atoms Tin.

2.1.2 Futamura Projections

Possible uses of partial evaluation are known as Futamura projections [11]. Our
work is based on the first one and could be extended with the second one. They

1Independence is often achieve through renaming, not discussed here.
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Input: a program P and a set of atoms Tin

Output: a set of atoms Tout

begin

i := 0;

S0 := Tin ;

repeat

P’ := U(Si,P) ;

A := Si ∪ {pj(t1,j,. . .,tnj ,j)|

B←p1,1(t1,1,. . .,tn1,1),. . .,pm(t1,m,. . .,tnm,m) ∈ P’} ;

Si+1 := abstract(Si) ;

i := i+1 ;

until Si = Si−1 ;

Tout := Si ;

end

Figure 2.1: A General Algorithm for Partial Evaluation

will be presented in sections 2.1.2 and 2.1.2 but few notations and definitions
need to be introduced before.

[[P]]L : D × D∗ → D∗ denotes the semantics of the program P ∈ D in the
language L that takes argument in D × D∗ and returns a result in D∗. One
can notice that the program is in the domain of the data. Several languages
can be used: a language for the implementation of the different tools, a source
language and an object language, respectively represented by LI , LS and LO.
We denote by LX and LY some languages that can be any of the previous ones.

In the following definitions, let source be a program written in LS and
d = (d1, d2) ∈ D ×D∗ be some input data.

Definition 12 (Interpreter) An interpreter int is a program that takes a
source program source and its data d and that must return the same result as
if the source program had been directly applied to the data. It can be formalized
as:

output = [[source]]LS
(d) = [[int]]LI

(source, d) (2.1)

Definition 13 (Compiler) A compiler comp is a program that takes a source
program as input and generate a program object written in LO which, when
applied to some data d must return the same result as if the program source
had been directly applied to d. This can be formalized as:

object = [[comp]]LI
(source) (2.2)

output = [[source]]LS
(d) = [[object]]LO

(d) (2.3)

Definition 14 (Partial Evaluator) A partial evaluator mixLX ,LY
is a pro-

gram, here written in an language LX , that takes a program prog written in
LX and a part d1 ∈ D of its input data (d1, d2) ∈ D×D∗ and generate a partial
evaluation, written in LY , of prog with respect to d1. As explained in Sec-
tion 2.1.1, given the rest of its input data, the partial evaluated program behaves
as if prog was directly applied to the full input data, this can be formalized as:

[[prog]]LX
(d1, d2) = [[[[mixLX ,LY

]]LX
(prog, d1)]]LY

(d2) (2.4)
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First Futamura Projection

The first Futamura Projection rely on the above definitions to define a generic
way of compiling programs using a partial evaluator and an interpreter. The
equations used in order to deduce the following ones are written above the equal
sign.

output
(2.1)
= [[int]]LI

(source, d)
(2.4)
= [[[[mixLI ,LO

]]LI
(int, source)]]LO

(d) (2.5)
(2.3)
= [[object]]LO

(d) (2.6)

The two latest equations lead to the following definition.

object
(2.5 & 2.6)

= [[mixLI ,LO
]]LI

(int, source) (2.7)

This equation implies that it is possible to replace a compiler by a partial eval-
uator and an interpreter. The main advantage of this replacement is that an
interpreter is usually easier to write than a compiler and, even if the result of
the partial evaluation is not as efficient as a compiler written from scratch, it in
general more efficient that simply interpreting the program, i.e., without partial
evaluation.

The other advantage is that an existing partial evaluator can be reused, and
should therefore be more robust. As an interpreter can be seen as a specification
of the language, the risk of having an error with a such compilation is very low.

Second Futamura Projection

The second Futamura Projection introduce a way to generate a compiler from
an interpreter and a partial evaluator.

object
(2.7)
= [[mixLI ,LO

]]LI
(int, source)

(2.1)
= [[[[mixLI ,LO

]]LI
(mixLI ,LO

, int)]]LO
(source) (2.8)

(2.2)
= [[comp]]LI

(source) (2.9)

In those equations, if only one partial evaluator is used, it needs to be self-
applicable, which implies that the language of implementation of the partial
evaluator need to be the same as the one of the programs it evaluates, which is
the case of the partial evaluator mix defined in Definition 14.

[[comp]]LI

(2.8 & 2.9)
= [[[[mixLI ,LO

]]LI
(mixLI ,LO

, int)]]LO
(2.10)

This second Futamura Projection means we can automatically generate a com-
piler for programs in LS from a partial evaluator and an interpreter both written
in the implementation language LI . In the general equation (2.10), the equality
is between the semantics because the languages LI and LO of the two compilers
are different. However, the result produced by the partial evaluation studied
in Section 2.1.1 and the input program are both in the same language (in that
case, a logic programming language). As aforementioned, if we use only one
partial evaluator, it needs to be self-applicable, so the implementation language
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must be the logic programming language chosen previously for the program. It
could therefore give a compiler in the same language as comp, but the object
program object would also be in this language. In the studied case, LI and LO

are both high level languages and a compiler is needed to compile object. It
could also be possible that LI and LO are low level languages, but this would
be more difficult to implement and not as efficient.

2.1.3 Automatic Generation of Residual LP Programs

We use the partial evaluator for (C)LP programs of [25] written in Ciao and
which is part of CiaoPP. We represent it here as a function Mix = [[mixLP,LP]] :
Prog × Data → Prog which, for a given program P ∈ Prog and static data
S ∈ Data, returns a residual program PS ∈ Prog which is a specialization [16]
of P with respect to S. It

The development of partial evaluation, program specialization and related
techniques [10, 17, 16, 12, 4] has led to the now established approach to compi-
lation (known as the first Futamura projection presented in Section 2.1.2) based
on specializing an interpreter with respect to a fixed source program. This al-
lows the translation of the program S into another programming language, in
this case Ciao. The residual program is ready now to be, for instance, executed
in such language or, as in this case, analyzed by tools for the language in which
it has been translated. In the (C)LP context, this interpretative approach has
been applied to analyze high-level imperative languages [23] and also the PIC
processor [13] by relying on CLP tools.

The application of this interpretative approach to compilation from JVML
to LP within our framework consists in partially evaluating the Int with respect
to a method invocation specification M (see Definition 5 above) and an object
program P = Parser({class1, . . . , classn}). This results in a residual LP
program, IP.

Definition 15 (LP residual program) Let Int ∈ Prog be a JVMLr inter-
preter, M be a method invocation specification, {class1, . . . , classn} ∈ 2Classes

be a set of classes and P ∈ JProg, with P = Parser({class1, . . . , classn}), be
a JVMLr program. The LP residual program, IP, for Int with respect to P and
M is defined as IP = Mix (Int , (P,M)).

Note that, alternatively to the interpretative approach, we could have imple-
mented a compiler from Java bytecode to LP. However, the interpretative ap-
proach has the advantages that it is simpler to implement, provided that a
partial evaluator for LP programs is available, and more flexible in the sense
that it is easy to modify the interpreter in order to observe new properties of
interest.

Example 3 We show in Figure 2.2 the result of the automatic partial evalu-
ation of an implementation of the interpreter which does not output the trace
(see Definition 5) w.r.t. the LP translation of the program in Example 1, an
empty heap, the signature of the exp method and two variables as parameters.
The partial evaluator has different options for tuning the level of specialization.
In particular, the so-called local control decides when to stop derivations and the
global control when to generalize a new term resulting from a previous unfolding.
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:- module( _, [exp_notrace/2] ).

exp_notrace([B ,C ],A ) :-
C\=0, D is B , E is-1+C ,
execute_notrace(A ,B ,C ,D ,E ) .

exp_notrace([A ,0],st(heap(dynamicHeap([]),staticHeap([])),fr(method(methodSignature(methodName(
className(packageName(’’),shortClassName(’ExpFact’)),shortMethodName(exp)),[primitiveType(int),
primitiveType(int)],primitiveType(int)),bytecodeMethod(4,2,0,methodId(’ExpFact_class’,7),[]),
final(false),static(true),public),19,[num(int(1))],[num(int(A )),num(int(0)),num(int(1)),
num(int(0))]),[])).

execute_notrace(A ,B ,C ,D ,E ) :-
E\=0,
F is D *B ,
G is-1+E ,
execute_notrace(A ,B ,C ,F ,G ) .

execute_notrace(st(heap(dynamicHeap([]),staticHeap([])),fr(method(methodSignature(methodName(
className(packageName(’’),shortClassName(’ExpFact’)),shortMethodName(exp)),[primitiveType(int),
primitiveType(int)],primitiveType(int)),bytecodeMethod(4,2,0,methodId(’ExpFact_class’,7),[]),
final(false),static(true),public),19,[num(int(C ))],[num(int(A )),num(int(B )),num(int(C )),
num(int(0))]),[]),A ,B ,C ,0).

Figure 2.2: Residual Exponential Program

For this example, we have used the local control strategy based on homeomor-
phic embedding which is described in [25]. For the global control, we have also
used homeomorphic embedding in order to flag when generalization is required.
The most relevant point to notice about the residual program is that our PE tool
has achieved an optimal specialization by transforming a rather large interpreter
into a small residual program (where all the interpretation overhead has been re-
moved). It can also be seen that partial evaluation has done a very good job since
the residual program basically corresponds to the Ciao version one would have
written by hand (except that he would not have output the whole step).

Example 4 The program in Figure 2.2 provides a very satisfactory translation
from the Java bytecode method exp. While the availability of a LP program
which computes just the final state can be of a lot of interest when reasoning
about functional properties of the code, it is also of great importance to have
augmented the interpreter with an additional argument which computes a trace
(see Definition 5) in order to capture the computation history. This will al-
low observing a good number of interesting properties about the program. The
residual program which additionally computes execution traces can be seen in
Figure 2.3. Now, we have a predicate exp/3 whose third argument, on success
contains the execution trace at the level of Java bytecode.

2.2 Analysis of Logic Programs

Having obtained an LP representation of a Java bytecode program, the next
task is to use existing analysis tools for (C)LP in order to infer and verify prop-
erties about the original bytecode program. The analysis tools used are based
on the technique of abstract interpretation [7] and are part of the CiaoPP sys-
tem [14]. Abstract interpretation provides a general formal framework for com-
puting safe approximations (i.e., abstractions) of program behavior. Programs
are interpreted using abstract values instead of concrete values. An abstract
value is a finite representation of a, possibly infinite, set of concrete values in
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:- module( _, [exp/3] ).

exp([A ,0],st(heap(dynamicHeap([]),staticHeap([])),fr(method(methodSignature(methodName(
className(packageName(’’),shortClassName(’ExpFact’)),shortMethodName(exp)),
[primitiveType(int),primitiveType(int)],primitiveType(int)),bytecodeMethod(4,2,0,
methodId(’ExpFact_class’,7),[]),final(false),static(true),public),19,[num(int(1))],
[num(int(A )),num(int(0)),num(int(1)),num(int(0))]),[]),
[const_step_ok,istore_step_ok,iload_step,istore_step_ok,iload_step,if0_step_jump,
iload_step,normal_end]).

exp([B ,C ],A ,[const_step_ok,istore_step_ok,iload_step,
istore_step_ok,iload_step,if0_step_continue,iload_step,iload_step,ibinop_step_ok,
istore_step_ok,iinc_step|D ]) :-

C\=0,
E is B ,
F is-1+C ,
execute_3_1(A ,D ,B ,C ,E ,F ) .

execute_3_1(st(heap(dynamicHeap([]),staticHeap([])),fr(method(methodSignature(methodName(
className(packageName(’’),shortClassName(’ExpFact’)),shortMethodName(exp)),
[primitiveType(int),primitiveType(int)],primitiveType(int)),bytecodeMethod(4,2,0,
methodId(’ExpFact_class’,7),[]),final(false),static(true),public),19,[num(int(C ))],
[num(int(A )),num(int(B )),num(int(C )),num(int(0))]),[]),
[goto_step_ok,iload_step,if0_step_jump,iload_step,normal_end],A ,B ,C ,0).

execute_3_1(A ,[goto_step_ok,iload_step,if0_step_continue,iload_step,iload_step,ibinop_step_ok,
istore_step_ok,iinc_step|F ],B ,C ,D ,E ) :-

E\=0,
G is D *B ,
H is-1+E ,
execute_3_1(A ,F ,B ,C ,G ,H ) .

Figure 2.3: Residual Exponential Program with Trace

the concrete domain D. The set of all possible abstract values constitutes the
abstract domain, denoted Dα, which is usually a complete lattice or CPO which
is ascending chain finite. We denote by ADom the set of all possible abstract
domain. We rely on a generic analysis algorithm (in the style of [15]) that
takes as parameter, as well as a program, an abstract domain and produces an
approximation of the program with respect to the given abstract domain. An
approximation of a program is a set of 3-tuple 〈A : CP → AP 〉 where A is an
predicate name, CP (Calling Pattern) is a substitution in the abstract domain
that describes a call to A, and AP (Answer Pattern) is another substitution in
the abstract domain that describes the answer of the predicate. The set of all
possible approximation is denoted by AApprox . Correctness of analysis ensures
that Approxα safely approximates the semantics of P.

In order to verify the program, the user has to provide the intended semantics
(or program specification) as a semantic value Assertα ∈ AApprox in terms of
assertions (these are linguistic constructions which allow expressing properties
of programs) [26]. This intended semantics embodies the requirements as an
expression of the user’s expectations. The verifier has to compare the (actual)
inferred semantics Approxα w.r.t. Assertα.2 The verifier used is the abstract
interpretation-based verifier integrated in CiaoPP. It is dealt here as a function
AIVerifier : Prog×ADom×AApprox → boolean which for a given program P ∈
Prog, an abstract domain Dα ∈ ADom and an intended semantics Assertα ∈ Dα

succeeds if the abstraction Analyzer(P, Dα) = Approxα entails that Psatisfies
Assertα, i.e., Approxα v Assertα.

2Comparison between actual and intended semantics of the program is easier in the same
domain, since then the operators on the abstract lattice, that are typically already defined in
the analyzer, can be used to perform this comparison.
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Definition 16 (verified bytecode) Let IP ∈ Prog be an LP residual program
for Int w.r.t. {class1, . . . , classn} ∈ 2Classes and a method invocation speci-
fication M . Let Dα ∈ ADom be an abstract domain and Assertα ∈ AApprox
be the abstract intended semantics. We say that ({class1, . . . , classn},M) is
verified w.r.t. Assertα in Dα if AIVerifier(IP, Dα,Assertα) succeeds.

In principle, any of the considerable number of abstract domains developed for
abstract interpretation of logic programs can be applied to residual programs,
as well as to any other program. In the next sections, we show by means of two
Java bytecode examples the kind of properties that we can verify about them.

2.2.1 Run-time Error Freeness Analysis

For this analysis, we will focus on the main method of the example shown
in Figure 2. Features used in the execution of this method include object
creation, calls to static (exp and fact) and instance method (setExp and
setFact) — which demonstrates that this approach is not restricted to intra-
procedural analysis. The use of objects could in principle throw exceptions
of type NullPointerException and the method fact exceptions of type Ari-
thmeticException. Clearly, the execution of the main method will not produce
any exception. However, the JVM is unaware of this and has to perform the
corresponding run-time test. By using this approach one can statically verify
that the previous code cannot issue such an exception (nor any other kind of
run-time error). Since the data other than for the computation of exponential
are known, the generated code is very similar to the partial evaluation of exp
(see Figure 2.3). However, as there is the creation of an object in the heap and
more code executed, the heap and the trace are respectively larger and longer.
Figure 2.4 presents the result of the partial evaluation of the class ExpFact with
respect to a call to the static void main method with both the base and the
exponent unknown.

Now, we want to specify in Ciao the property “goodtrace” which ensures
that the program is run-time error free. This includes the safety issue of not
issuing NullPointerException nor any other kind of run-time error (e.g., Ari-
thmeticException, etc). As it is not a predefined property in Ciao, we have
to declare it as a regular type using the regtype declarations in CiaoPP.3 The
regular type goodtrace defines this notion of safety for the current example (for
conciseness, bytecode instructions which do not appear in the example program
have been omitted):

:- regtype goodtrace/1.
goodtrace(T) :- list(T,goodstep).

:- regtype goodstep/1.
goodstep(iinc_step). goodstep(aload_step_ok). goodstep(invokevirtual_step_ok).
goodstep(iload_step). goodstep(if0_step_jump). goodstep(invokestatic_step_ok).
goodstep(normal_end). goodstep(const_step_ok). goodstep(if0_step_continue).
goodstep(new_step_ok). goodstep(return_step_ok). goodstep(if_icmp_step_jump).
goodstep(pop_step_ok). goodstep(astore_step_ok). goodstep(putfield_step_ok).
goodstep(dup_step_ok). goodstep(istore_step_ok). goodstep(getfield_step_ok).
goodstep(goto_step_ok). goodstep(ibinop_step_ok). goodstep(ireturn_step_ok).
goodstep(if_icmp_step_continue). goodstep(invokespecial_step_here_ok).

Next, we use the following “success” assertion as a way to provide a partial
specification of the program.

3Formally, this property is defined as a regular unary logic program, see [9].
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:- module( _, [main/3] ).

main([A,B],
st(heap(dynamicHeap([object(locationObject(className(packageName(’’),shortClassName(’ExpFact’))),
[objectField(fieldSignature(fieldName(className(packageName(’’),shortClassName(’ExpFact’)),
shortFieldName(’_fact’)),primitiveType(int)),num(int(2))),objectField(fieldSignature(
fieldName(className(packageName(’’),shortClassName(’ExpFact’)),shortFieldName(’_exp’)),
primitiveType(int)),num(int(1)))])]),staticHeap([])),fr(method(methodSignature(methodName(
className(packageName(’’),shortClassName(’ExpFact’)),shortMethodName(main)),[primitiveType(int),
primitiveType(int)],none),bytecodeMethod(5,2,0,methodId(’ExpFact_class’,1),[exceptionHandler(
className(packageName(’java/lang/’),shortClassName(’ArithmeticException’)),19,29,32)]),
final(false),static(true),public),34,[],[num(int(A)),num(int(B)),ref(loc(1)),num(int(2)),
num(int(0))]),[]),

[new_step_ok,dup_step_ok,invokespecial_step_here_ok,aload_step_ok,invokespecial_step_here_ok,
return_step_ok,return_step_ok,astore_step_ok,iload_step,iload_step,invokestatic_step_ok,
const_step_ok,istore_step_ok,iload_step,istore_step_ok,iload_step,if0_step_jump,iload_step,
ireturn_step_ok,istore_step_ok,aload_step_ok,iload_step,invokevirtual_step_ok,aload_step_ok,
iload_step,putfield_step_ok,return_step_ok,const_step_ok,invokestatic_step_ok,iload_step,
const_step_ok,if_icmp_step_jump,iload_step,const_step_ok,if_icmp_step_continue,iload_step,
iload_step,const_step_ok,ibinop_step_ok,invokestatic_step_ok,iload_step,const_step_ok,
if_icmp_step_jump,iload_step,const_step_ok,if_icmp_step_jump,iload_step,if0_step_continue,
const_step_ok,ireturn_step_ok,ibinop_step_ok,ireturn_step_ok,istore_step_ok,aload_step_ok,
iload_step,invokevirtual_step_ok,aload_step_ok,iload_step,putfield_step_ok,return_step_ok,
goto_step_ok,normal_end]) :-

B=<0 .
main([B,C],A,[new_step_ok,dup_step_ok,invokespecial_step_here_ok,aload_step_ok,

invokespecial_step_here_ok,return_step_ok,return_step_ok,astore_step_ok,iload_step,iload_step,
invokestatic_step_ok,const_step_ok,istore_step_ok,iload_step,istore_step_ok,iload_step,
if0_step_continue,iload_step,iload_step,ibinop_step_ok,istore_step_ok,iinc_step|D]) :-

C>0,
E is B,
F is-1+C,
execute_4_1(A,D,B,C,E,F) .

execute_4_1(
st(heap(dynamicHeap([object(locationObject(className(packageName(’’),shortClassName(’ExpFact’))),
[objectField(fieldSignature(fieldName(className(packageName(’’),shortClassName(’ExpFact’)),
shortFieldName(’_fact’)),primitiveType(int)),num(int(2))),objectField(fieldSignature(fieldName(
className(packageName(’’),shortClassName(’ExpFact’)),shortFieldName(’_exp’)),primitiveType(int)),
num(int(C)))])]),staticHeap([])),fr(method(methodSignature(methodName(className(packageName(’’),
shortClassName(’ExpFact’)),shortMethodName(main)),[primitiveType(int),primitiveType(int)],none),
bytecodeMethod(5,2,0,methodId(’ExpFact_class’,1),[exceptionHandler(className(packageName
(’java/lang/’),shortClassName(’ArithmeticException’)),19,29,32)]),final(false),static(true),
public),34,[],[num(int(A)),num(int(B)),ref(loc(1)),num(int(2)),num(int(0))]),[]),

[goto_step_ok,iload_step,if0_step_jump,iload_step,ireturn_step_ok,istore_step_ok,
aload_step_ok,iload_step,invokevirtual_step_ok,aload_step_ok,iload_step,putfield_step_ok,
return_step_ok,const_step_ok,invokestatic_step_ok,iload_step,const_step_ok,if_icmp_step_jump,
iload_step,const_step_ok,if_icmp_step_continue,iload_step,iload_step,const_step_ok,
ibinop_step_ok,invokestatic_step_ok,iload_step,const_step_ok,if_icmp_step_jump,iload_step,
const_step_ok,if_icmp_step_jump,iload_step,if0_step_continue,const_step_ok,ireturn_step_ok,
ibinop_step_ok,ireturn_step_ok,istore_step_ok,aload_step_ok,iload_step,invokevirtual_step_ok,
aload_step_ok,iload_step,putfield_step_ok,return_step_ok,goto_step_ok,normal_end],A,B,C,D) :-

D=<0 .
execute_4_1(A,[goto_step_ok,iload_step,if0_step_continue,iload_step,iload_step,ibinop_step_ok,

istore_step_ok,iinc_step|F],B,C,D,E) :-
E>0,
G is D*B,
H is-1+E,
execute_4_1(A,F,B,C,G,H) .

Figure 2.4: Complete Residual Program
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:- success main(A,B,C) => goodtrace(C).

This assertion should be interpreted as: for all calls to main(A,B,C), if the call
succeeds, then C must be a goodtrace on success.

Now, CiaoPP performs regular type analysis using, for example, the eterms
domain [28]. This allows computing safe approximations of the success states
of all predicates. After this, CiaoPP performs compile-time checking [27] of the
success assertion above, comparing it with the assertions inferred by analysis,
and produces as output the following assertion:

:- checked success main(A,B,C) => goodtrace(C).

Thus, the provided assertion has been marked as checked, i.e., it has been
validated. When all assertions (in this case only one) have been moved to this
checked status, the program has been verified.

2.2.2 Termination and Cost Analyses

Program termination is obviously a desirable property in many contexts. Unfor-
tunately, and as it is well known, this is an undecidable property, and therefore
we can only expect termination analysis to compute approximate results. In
spite of this, powerful static analyzers are available which can ensure termi-
nation for an important subset of terminating programs. In the termination
analysis area, it can be argued that the state of the art in (C)LP is more ad-
vanced than that in imperative programming. Some well-known termination
analysis systems for (C)LP are TerminWeb [6] and cTi [22]. Either of these
systems can be used in order to prove termination of the residual exponential
LP program.

Let us consider again the program in Figure 2.4. Let us also consider the
following entry declaration:

:- entry main([B,C],A,D) : (int(B), int(C), var(A), var(D)).

which describes the valid external queries to the predicate main/3. The argu-
ment for proving termination of all calls satisfying the entry declaration above
is as follows. Non-termination can only occur in loops. If (1) we can find an ar-
gument whose size decreases in every iteration of the loop with respect to some
norm which assigns values always greater or equal than zero for any term, and
(2) the program is rigid with respect to the size of the corresponding argument
(all instances of the term have the same size) then the program terminates.
In Example 3, the only loop we have is for predicate execute 4 1/6. We can
conclude termination by reasoning on the last argument. This argument can be
inferred to be bound to an integer for all computations originating from the en-
try assertion above. Since in the recursive path this last argument is decreased
before making the recursive call, the program is guaranteed to terminate.

CiaoPP also offers an upper bound cost analysis [8] that can be used in order
to prove termination. Due to a current limitation of this analysis, the residual
program must not have accumulating parameters. Unfortunately, the partial
evaluator integrated into CiaoPP generates residual program with accumulating
parameters. Although the most studied problem is usually the opposite, that
is to say, adding accumulative parameters in order to reduce computation time
by allowing the compilator not to have to allocate a new execution frame for
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the recursion and using the current one, a solution to remove this parameter
is proposed in [18]. Because of a lack of time, we have not yet implemented
this in CiaoPP. Figure 2.5 is a modified-by-hand version of the residual program
in order to get rid of the accumulating parameters and to simplify the state
to make the program easier to read. We consider the same entry assertion as
before. The cost analysis can then infer the following property :

:- true pred execute_4_1(A,_1,D,_2)
: ( term(A), num(_1), num(D), term(_2) )

=> ( num(A), num(_1), num(D), rt85(_2),
size_ub(A,exp(int(_1),int(D))+1), size_ub(_1,int(_1)),
size_ub(D,int(D)), size_ub(_2,8*int(D)+48) )

+ steps_ub(int(D)+1).

which describe states that execute 4 1/4 is called with four parameters of type
term, num, num and term (where term is anything and num a number), and
that, on success, it returns respectively three numbers and a term of type rt85
which correspond to a auto-generated type that represents the type of the trace.
The assertions also gives upper bound on the data, where the first argument
is bounded by the exponential of 1 (the base) and D (the exponent), and the
last argument (the trace) is bounded by 8 times the value of the exponent plus
48, which implies that it is linear in function of the exponent. Finally, after the
sign + comes the upper bound of the cost of the predicate which is the value of
the exponent plus 1. This proves termination of the predicate.
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:- module( _, [main/3] ).

:- entry main([A,B],C,D) : (num(A),num(B),term(C),term(D)).

main([_A,B],1,[new_step_ok,dup_step_ok,invokespecial_step_here_ok,aload_step_ok,
invokespecial_step_here_ok,return_step_ok,return_step_ok,astore_step_ok,iload_step,
iload_step,invokestatic_step_ok,const_step_ok,istore_step_ok,iload_step,istore_step_ok,
iload_step,if0_step_jump,iload_step,ireturn_step_ok,istore_step_ok,aload_step_ok,iload_step,
invokevirtual_step_ok,aload_step_ok,iload_step,putfield_step_ok,return_step_ok,const_step_ok,
invokestatic_step_ok,iload_step,const_step_ok,if_icmp_step_jump,iload_step,const_step_ok,
if_icmp_step_continue,iload_step,iload_step,const_step_ok,ibinop_step_ok,invokestatic_step_ok,
iload_step,const_step_ok,if_icmp_step_jump,iload_step,const_step_ok,if_icmp_step_jump,
iload_step,if0_step_continue,const_step_ok,ireturn_step_ok,ibinop_step_ok,ireturn_step_ok,
istore_step_ok,aload_step_ok,iload_step,invokevirtual_step_ok,aload_step_ok,iload_step,
putfield_step_ok,return_step_ok,goto_step_ok,normal_end]) :-

B=<0 .
main([B,C],A,[new_step_ok,dup_step_ok,invokespecial_step_here_ok,aload_step_ok,

invokespecial_step_here_ok,return_step_ok,return_step_ok,astore_step_ok,iload_step,
iload_step,invokestatic_step_ok,const_step_ok,istore_step_ok,iload_step,istore_step_ok,
iload_step,if0_step_continue,iload_step,iload_step,ibinop_step_ok,istore_step_ok,
iinc_step|D]) :-

C>0,
F is-1+C,
execute_4_1(A,B,F,D) .

execute_4_1(1,_,D,[goto_step_ok,iload_step,if0_step_jump,iload_step,ireturn_step_ok,
istore_step_ok,aload_step_ok,iload_step,invokevirtual_step_ok,aload_step_ok,iload_step,
putfield_step_ok,return_step_ok,const_step_ok,invokestatic_step_ok,iload_step,const_step_ok,
if_icmp_step_jump,iload_step,const_step_ok,if_icmp_step_continue,iload_step,iload_step,
const_step_ok,ibinop_step_ok,invokestatic_step_ok,iload_step,const_step_ok,if_icmp_step_jump,
iload_step,const_step_ok,if_icmp_step_jump,iload_step,if0_step_continue,const_step_ok,
ireturn_step_ok,ibinop_step_ok,ireturn_step_ok,istore_step_ok,aload_step_ok,iload_step,
invokevirtual_step_ok,aload_step_ok,iload_step,putfield_step_ok,return_step_ok,goto_step_ok,
normal_end]) :-

D=<0 .
execute_4_1(A,B,E,[goto_step_ok,iload_step,if0_step_continue,iload_step,iload_step,

ibinop_step_ok,istore_step_ok,iinc_step|F]) :-
E>0,
H is-1+E,
execute_4_1(R,B,H,F),

A is R*B.

Figure 2.5: Residual Program without Accumulating Parameters



Conclusion

From a formal (but incomplete) specification of the JVML (Bicolano), we have
specified a language (JVMLr) and implemented the corresponding interpreter.
This interpreter has been slightly modified in order to be able to start the ex-
ecution of whatever method we want (method invocation specification) and to
be partially evaluable (some adaptations have been done to fit within the lim-
itations of the partial evaluator). By partially evaluating this interpreter with
respect to a JVMLr program, we obtain a LP program from which we can infer
rich properties as termination and run-time error freeness. We should then be
able to use other existing analyses on those residual programs in order to infer
other useful property. This is the main contribution of this work, to allow the
use of all existing analyses for LP to check and verify Java bytecode (although,
some analyses can be meaningless on Java bytecode like determinacy). As we
use CiaoPP for the analyses, its Abstraction Carrying Code [1] (ACC) architec-
ture can also be used to generate certificates for the residual program. Now,
the main limitations of this approach is that, as the certificate is generated for
the residual program, the consumer has to re-generated the residual program
and the partial evaluator has to be part of the trusted code. Partial evaluation
can be costly and solutions have to be found to reduce its cost on the consumer
side (e.g., providing the fixpoint), or removing it of the checking process by
“translating” the certificate on the LP program to the Java bytecode program.
Partial evaluation is also costly on the producer side. To have a more time- and
cost-efficient partial evaluation, as it is always applied on the same interpreter
and only the source program changes, it might be possible to give some indica-
tions to the partial evaluator so it does not need to look for all the predicates
that can be unfolded, as some general conditions can be stated under which
some predicates can be evaluated in one step, or have to be kept as is. For
larger programs, we hope the modular architecture of the partial evaluator and
analyzers of CiaoPP will allow to focus on small parts of large programs.
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step(exception_caught, P ,
stE(H ,frE(M ,PC ,Loc ,L ),SF ),
st(H ,fr(M ,PCb ,[ref(Loc )],L ),SF )):-

method_body(M ,BM ),
bytecodeMethod_exceptionHandlers(BM ,ExL ),
lookup_handlers(P ,ExL ,H ,PC ,Loc ,PCb ).

step(exception_uncaught, P ,
stE(H ,frE(M ,PC ,Loc ,_L ),[fr(Mb ,PCb ,_Sb ,Lb )|SF ]),
stE(H ,frE(Mb ,PCb ,Loc ,Lb ),SF )):-

method_body(M ,BM ),
bytecodeMethod_exceptionHandlers(BM ,ExL ),
\+ exception_uncaught_step_cond(P ,ExL ,H ,PC ,Loc ).

step(aaload_step_ok, _P ,
st(H ,fr(M ,PC ,[num(int(I )),ref(Loc )|S ],L ),SF ),
st(H ,fr(M ,PCb ,[Val |S ],L ),SF )):-

instructionAt(M ,PC ,aaload),
next(M ,PC ,PCb ),
heap_typeof(H ,Loc ,locationArray(Length ,refType(_RT ))),
0 =< I ,
I < Length ,
heap_get(H ,arrayElement(Loc ,I ),Val ).

step(aaload_step_NullPointerException , P ,
st(H ,fr(M ,PC ,[num(int(_)),null|_S ],L ),SF ),
stE(Hb ,frE(M ,PC ,Loc ,L ),SF )):-

instructionAt(M ,PC ,aaload),
nullPointerException(NPE ),
javaLang(JL ),
heap_new(H ,P ,locationObject(className(JL ,NPE )),Loc ,Hb ).

step(aaload_step_ArrayIndexOutOfBoundsException , P ,
st(H ,fr(M ,PC ,[num(int(I )),ref(Loc )|_S ],L ),SF ),
stE(Hb ,frE(M ,PC ,Locb ,L ),SF )):-

instructionAt(M ,PC ,aaload),
heap_typeof(H ,Loc ,locationArray(Length ,refType(_RT ))),
(I < 0 ; I >= Length ),
javaLang(JL ),
arrayIndexOutOfBoundsException(AIOOBE ),
heap_new(H ,P ,locationObject(className(JL ,AIOOBE )),Locb ,Hb ).

step(aastore_step_ok, P ,
st(H ,fr(M ,PC ,[Val ,num(int(I )),ref(Loc )|S ],L ),SF ),
st(Hb ,fr(M ,PCb ,S ,L ),SF )):-

instructionAt(M ,PC ,aastore),
next(M ,PC ,PCb ),
heap_typeof(H ,Loc ,locationArray(Length ,TP )),
assign_compatible(P ,H ,Val ,TP ),
0 =< I , I < Length ,
heap_update(H ,arrayElement(Loc ,I ),Val ,Hb ).

step(aastore_step_NullPointerException , P ,
st(H ,fr(M ,PC ,[_Val ,num(int(_I )),null|_S ],L ),SF ),
stE(Hb ,frE(M ,PC ,Locb ,L ),SF )):-

instructionAt(M ,PC ,aastore),
nullPointerException(NPE ),
javaLang(JL ),
heap_new(H ,P ,locationObject(className(JL ,NPE )),Locb ,Hb ).

step(aastore_step_ArrayIndexOutOfBoundsException , P ,
st(H ,fr(M ,PC ,[_Val ,num(int(I )),ref(Loc )|_S ],L ),SF ),
stE(Hb ,frE(M ,PC ,Locb ,L ),SF )):-

instructionAt(M ,PC ,aastore),
heap_typeof(H ,Loc ,locationArray(Length ,refType(_RT ))),
(I < 0 ; I >= Length ),
javaLang(JL ),
arrayIndexOutOfBoundsException(AIOOBE ),
heap_new(H ,P ,locationObject(className(JL ,AIOOBE )),Locb ,Hb ).

Figure A.1: Implementation in Ciao of the dynamic semantics of JVMLr (part
1)
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step(aastore_step_ArrayStoreException , P ,
st(H ,fr(M ,PC ,[Val ,num(int(I )),ref(Loc )|_S ],L ),SF ),
stE(Hb ,frE(M ,PC ,Locb ,L ),SF )):-

instructionAt(M ,PC ,aastore),
heap_typeof(H ,Loc ,locationArray(Length ,TP )),
0 =< I , I < Length ,
\+ assign_compatible(P ,H ,Val ,TP ),
arrayStoreException(ASE ),
javaLang(JL ),
heap_new(H ,P ,locationObject(className(JL ,ASE )),Locb ,Hb ).

step(aconst_null, _P ,
st(H ,fr(M ,PC ,S ,L ),SF ),
st(H ,fr(M ,PCb ,[null|S ],L ),SF )):-

instructionAt(M ,PC ,aconst_null),
next(M ,PC ,PCb ).

step(aload_step_ok, _P ,
st(H ,fr(M ,PC ,S ,L ),SF ),
st(H ,fr(M ,PCb ,[Val |S ],L ),SF )):-

instructionAt(M ,PC ,aload(X )),
next(M ,PC ,PCb ),
localVar_get(L ,X ,Val ),
isReference(Val ).

step(anewarray_step_ok, P ,
st(H ,fr(M ,PC ,[num(int(Length ))|S ],L ),SF ),
st(Hb ,fr(M ,PCb ,[ref(Loc )|S ],L ),SF )):-

instructionAt(M ,PC ,anewarray(T )),
next(M ,PC ,PCb ),
0 =< Length ,
heap_new(H ,P ,locationArray(Length ,T ),Loc ,Hb ).

step(anewarray_step_NegativeArraySizeException , P ,
st(H ,fr(M ,PC ,[num(int(Length ))|_S ],L ),SF ),
stE(Hb ,frE(M ,PC ,Locb ,L ),SF )):-

instructionAt(M ,PC ,anewarray(_T )),
Length < 0,
negativeArraySizeException(NASE ),
javaLang(JL ),
heap_new(H ,P ,locationObject(className(JL ,NASE )),Locb ,Hb ).

step(areturn_step_ok, P ,
st(H ,fr(M ,PC ,[Val |_S ],_L ),CallStack ),
st(H ,fr(Mb ,PCbb ,[Val |Sb ],Lb ),SF )):-

instructionAt(M ,PC ,areturn),
nonvar(CallStack ),
CallStack = [fr(Mb ,PCb ,Sb ,Lb )|SF ],
next(Mb ,PCb ,PCbb ),
method_signature(M ,MSig ),
methodSignature_result(MSig ,refType(RT )),
assign_compatible(P ,H ,Val ,refType(RT )).

step(arraylength_step_ok, _P ,
st(H ,fr(M ,PC ,[ref(Loc )|S ],L ),SF ),
st(H ,fr(M ,PCb ,[num(int(Length ))|S ],L ),SF )):-

instructionAt(M ,PC ,arraylength),
next(M ,PC ,PCb ),
heap_typeof(H ,Loc ,locationArray(Length ,_TP )).

step(arraylength_step_NullPointerException , P ,
st(H ,fr(M ,PC ,[null|_S ],L ),SF ),
stE(Hb ,frE(M ,PC ,Locb ,L ),SF )):-

instructionAt(M ,PC ,arraylength),
nullPointerException(NPE ),
javaLang(JL ),
heap_new(H ,P ,locationObject(className(JL ,NPE )),Locb ,Hb ).

Figure A.2: Implementation in Ciao of the dynamic semantics of JVMLr (part
2)
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step(astore_step_ok,_P ,
st(H ,fr(M ,PC ,[Val |S ],L ),SF ),
st(H ,fr(M ,PCb ,S ,Lb ),SF )):-

instructionAt(M ,PC ,astore(X )),
isReference(Val ),
next(M ,PC ,PCb ),
localVar_update(L ,X ,Val ,Lb ).

step(athrow_step, _P ,
st(H ,fr(M ,PC ,[ref(Loc )|_S ],L ),SF ),
stE(H ,frE(M ,PC ,Loc ,L ),SF )):-

instructionAt(M ,PC ,athrow).
step(athrow_step_NullPointerException , P ,

st(H ,fr(M ,PC ,[null|_S ],L ),SF ),
stE(Hb ,frE(M ,PC ,Locb ,L ),SF )):-

instructionAt(M ,PC ,athrow),
nullPointerException(NPE ),
javaLang(JL ),
heap_new(H ,P ,locationObject(className(JL ,NPE )),Locb ,Hb ).

step(baload_step_ok, _P ,
st(H ,fr(M ,PC ,[num(int(I )),ref(Loc )|S ],L ),SF ),
st(H ,fr(M ,PCb ,[num(int(B ))|S ],L ),SF )):-

instructionAt(M ,PC ,baload),
next(M ,PC ,PCb ),
heap_typeof(H ,Loc ,locationArray(Length ,primitiveType(TP ))),
0 =< I ,
I < Length ,
(TP =boolean;TP =byte),
heap_get(H ,arrayElement(Loc ,I ),num(byte(B ))).

step(baload_step_NullPointerException , P ,
st(H ,fr(M ,PC ,[num(int(_)),null|_S ],L ),SF ),
stE(Hb ,frE(M ,PC ,Locb ,L ),SF )):-

instructionAt(M ,PC ,baload),
nullPointerException(NPE ),
javaLang(JL ),
heap_new(H ,P ,locationObject(className(JL ,NPE )),Locb ,Hb ).

step(baload_step_ArrayIndexOutOfBoundsException , P ,
st(H ,fr(M ,PC ,[num(int(I )),ref(Loc )|_S ],L ),SF ),
stE(Hb ,frE(M ,PC ,Locb ,L ),SF )):-

instructionAt(M ,PC ,baload),
heap_typeof(H ,Loc ,locationArray(Length ,_RT )),
(I < 0 ; I >= Length ),
javaLang(JL ),
arrayIndexOutOfBoundsException(AIOOBE ),
heap_new(H ,P ,locationObject(className(JL ,AIOOBE )),Locb ,Hb ).

step(bastore_step_ok, _P ,
st(H ,fr(M ,PC ,[num(int(Ib )),num(int(I )),ref(Loc )|S ],L ),SF ),
st(Hb ,fr(M ,PCb ,S ,L ),SF )):-

instructionAt(M ,PC ,bastore),
next(M ,PC ,PCb ),
heap_typeof(H ,Loc ,locationArray(Length ,primitiveType(byte))),
0 =< I , I < Length ,
i2b(Ib ,B ),
heap_update(H ,arrayElement(Loc ,I ),num(byte(B )),Hb ).

step(bastore_step_ok, _P ,
st(H ,fr(M ,PC ,[num(int(Ib )),num(int(I )),ref(Loc )|S ],L ),SF ),
st(Hb ,fr(M ,PCb ,S ,L ),SF )):-

instructionAt(M ,PC ,bastore),
next(M ,PC ,PCb ),
heap_typeof(H ,Loc ,locationArray(Length ,primitiveType(boolean))),
0 =< I , I < Length ,
i2bool(Ib ,B ),
heap_update(H ,arrayElement(Loc ,I ),num(byte(B )),Hb ).

Figure A.3: Implementation in Ciao of the dynamic semantics of JVMLr (part
3)
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step(bastore_step_NullPointerException , P ,
st(H ,fr(M ,PC ,[num(int(_)),num(int(_I )),null|_S ],L ),SF ),
stE(Hb ,frE(M ,PC ,Locb ,L ),SF )):-

instructionAt(M ,PC ,bastore),
nullPointerException(NPE ),
javaLang(JL ),
heap_new(H ,P ,locationObject(className(JL ,NPE )),Locb ,Hb ).

step(bastore_step_ArrayIndexOutOfBoundsException , P ,
st(H ,fr(M ,PC ,[num(int(_)),num(int(I )),ref(Loc )|_S ],L ),SF ),
stE(Hb ,frE(M ,PC ,Locb ,L ),SF )):-

instructionAt(M ,PC ,bastore),
heap_typeof(H ,Loc ,locationArray(Length ,refType(_RT ))),
(I < 0 ; I >= Length ),
javaLang(JL ),
arrayIndexOutOfBoundsException(AIOOBE ),
heap_new(H ,P ,locationObject(className(JL ,AIOOBE )),Locb ,Hb ).

step(checkcast_step_ok, P ,
st(H ,fr(M ,PC ,[Val |S ],L ),SF ),
st(H ,fr(M ,PCb ,[Val |S ],L ),SF )):-

instructionAt(M ,PC ,checkcast(T )),
next(M ,PC ,PCb ),
assign_compatible(P ,H ,Val ,refType(T )).

step(checkcast_step_ClassCastException , P ,
st(H ,fr(M ,PC ,[Val |_S ],L ),SF ),
stE(Hb ,frE(M ,PC ,Locb ,L ),SF )):-

instructionAt(M ,PC ,checkcast(T )),
\+ assign_compatible(P ,H ,Val ,refType(T )),
classCastException(CCE ),
javaLang(JL ),
heap_new(H ,P ,locationObject(className(JL ,CCE )),Locb ,Hb ).

step(const_step_ok, _P ,
st(H ,fr(M ,PC ,S ,L ),SF ),
st(H ,fr(M ,PCb ,[num(int(Z ))|S ],L ),SF )):-

instructionAt(M ,PC ,const(_T ,Z )),
next(M ,PC ,PCb ).

step(dup_step_ok, _P ,
st(H ,fr(M ,PC ,[V |S ],L ),SF ),
st(H ,fr(M ,PCb ,[V ,V |S ],L ),SF )):-

instructionAt(M ,PC ,dup),
next(M ,PC ,PCb ).

step(dup_x1_step_ok, _P ,
st(H ,fr(M ,PC ,[V1,V2|S ],L ),SF ),
st(H ,fr(M ,PCb ,[V1,V2,V2|S ],L ),SF )):-

instructionAt(M ,PC ,dup_x1),
next(M ,PC ,PCb ).

step(dup_x2_step_ok, _P ,
st(H ,fr(M ,PC ,[V1,V2,V3|S ],L ),SF ),
st(H ,fr(M ,PCb ,[V1,V2,V3,V1|S ],L ),SF )):-

instructionAt(M ,PC ,dup_x2),
next(M ,PC ,PCb ).

step(dup2_step_ok, _P ,
st(H ,fr(M ,PC ,[V1,V2|S ],L ),SF ),
st(H ,fr(M ,PCb ,[V1,V2,V1,V2|S ],L ),SF )):-

instructionAt(M ,PC ,dup2),
next(M ,PC ,PCb ).

step(dup2_x1_step_ok, _P ,
st(H ,fr(M ,PC ,[V1,V2,V3|S ],L ),SF ),
st(H ,fr(M ,PCb ,[V1,V2,V3,V1,V2|S ],L ),SF )):-

instructionAt(M ,PC ,dup2_x1),
next(M ,PC ,PCb ).

Figure A.4: Implementation in Ciao of the dynamic semantics of JVMLr (part
4)
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step(dup2_x2_step_ok, _P ,
st(H ,fr(M ,PC ,[V1,V2,V3,V4|S ],L ),SF ),
st(H ,fr(M ,PCb ,[V1,V2,V3,V4,V1,V2|S ],L ),SF )):-

instructionAt(M ,PC ,dup2_x2),
next(M ,PC ,PCb ).

step(getfield_step_ok, _P ,
st(H ,fr(M ,PC ,[ref(Loc )|S ],L ),SF ),
st(H ,fr(M ,PCb ,[V |S ],L ),SF )):-

instructionAt(M ,PC ,getfield(F )),
next(M ,PC ,PCb ),
heap_get(H ,dynamicField(Loc ,F ),V ).

step(getfield_step_NullPointerException , P ,
st(H ,fr(M ,PC ,[null|_S ],L ),SF ),
stE(Hb ,frE(M ,PC ,Locb ,L ),SF )):-

instructionAt(M ,PC ,getfield(_F )),
nullPointerException(NPE ),
javaLang(JL ),
heap_new(H ,P ,locationObject(className(JL ,NPE )),Locb ,Hb ).

step(getstatic_step_ok, P ,
st(H ,fr(M ,PC ,S ,L ),SF ),
st(H ,fr(M ,PCb ,[V |S ],L ),SF )):-

instructionAt(M ,PC ,getstatic(F )),
next(M ,PC ,PCb ),
isStatic(P ,F ),
heap_get(H ,staticField(F ),V ).

step(goto_step_ok, _P ,
st(H ,fr(M ,PC ,S ,L ),SF ),
st(H ,fr(M ,PCb ,S ,L ),SF )):-

instructionAt(M ,PC ,goto(O )),
PCb is PC +O.

step(i2b_step_ok, _P ,
st(H ,fr(M ,PC ,[num(int(I ))|S ],L ),SF ),
st(H ,fr(M ,PCb ,[num(int(Ib ))|S ],L ),SF )):-

instructionAt(M ,PC ,i2b),
next(M ,PC ,PCb ),
i2b(I ,Ib ).

step(i2s_step_ok, _P ,
st(H ,fr(M ,PC ,[num(int(I ))|S ],L ),SF ),
st(H ,fr(M ,PCb ,[num(int(Ib ))|S ],L ),SF )):-

instructionAt(M ,PC ,i2s),
next(M ,PC ,PCb ),
i2s(I ,Ib ).

step(ibinop_step_ok, _P ,
st(H ,fr(M ,PC ,[num(int(I2)),num(int(I1))|S ],L ),SF ),
st(H ,fr(M ,PCb ,[num(int(R ))|S ],L ),SF )):-

instructionAt(M ,PC ,ibinop(Op )),
ibinop_step_cond(Op ,I2),
next(M ,PC ,PCb ),
semBinopInt(Op ,I1,I2,R ).

step(ibinop_ArithmeticException , P ,
st(H ,fr(M ,PC ,[num(int(0)),num(int(_I1))|_S ],L ),SF ),
stE(Hb ,frE(M ,PC ,Locb ,L ),SF )):-

instructionAt(M ,PC ,ibinop(Op )),
(Op =divInt;Op =remInt),
arithmeticException(AE ),
javaLang(JL ),
heap_new(H ,P ,locationObject(className(JL ,AE )),Locb ,Hb ).

Figure A.5: Implementation in Ciao of the dynamic semantics of JVMLr (part
5)
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step(iaload_step_ok, _P ,
st(H ,fr(M ,PC ,[num(int(I )),ref(Loc )|S ],L ),SF ),
st(H ,fr(M ,PCb ,[num(int(Ib ))|S ],L ),SF )):-

instructionAt(M ,PC ,iaload),
next(M ,PC ,PCb ),
heap_typeof(H ,Loc ,locationArray(Length ,primitiveType(int))),
0 =< I ,
I < Length ,
heap_get(H ,arrayElement(Loc ,I ),num(int(Ib ))).

step(iaload_step_NullPointerException , P ,
st(H ,fr(M ,PC ,[num(int(_)),null|_S ],L ),SF ),
stE(Hb ,frE(M ,PC ,Locb ,L ),SF )):-

instructionAt(M ,PC ,iaload),
nullPointerException(NPE ),
javaLang(JL ),
heap_new(H ,P ,locationObject(className(JL ,NPE )),Locb ,Hb ).

step(iaload_step_ArrayIndexOutOfBoundsException , P ,
st(H ,fr(M ,PC ,[num(int(I )),ref(Loc )|_S ],L ),SF ),
stE(Hb ,frE(M ,PC ,Locb ,L ),SF )):-

instructionAt(M ,PC ,iaload),
heap_typeof(H ,Loc ,locationArray(Length ,primitiveType(int))),
(I < 0 ; I >= Length ),
javaLang(JL ),
arrayIndexOutOfBoundsException(AIOOBE ),
heap_new(H ,P ,locationObject(className(JL ,AIOOBE )),Locb ,Hb ).

step(iastore_step_ok, _P ,
st(H ,fr(M ,PC ,[num(int(Ib )),num(int(I )),ref(Loc )|S ],L ),SF ),
st(Hb ,fr(M ,PCb ,S ,L ),SF )):-

instructionAt(M ,PC ,iastore),
next(M ,PC ,PCb ),
heap_typeof(H ,Loc ,locationArray(Length ,primitiveType(int))),
0 =< I , I < Length ,
heap_update(H ,arrayElement(Loc ,I ),num(int(Ib )),Hb ).

step(iastore_step_NullPointerException , P ,
st(H ,fr(M ,PC ,[num(int(_)),num(int(_I )),null|_S ],L ),SF ),
stE(Hb ,frE(M ,PC ,Locb ,L ),SF )):-

instructionAt(M ,PC ,iastore),
nullPointerException(NPE ),
javaLang(JL ),
heap_new(H ,P ,locationObject(className(JL ,NPE )),Locb ,Hb ).

step(iastore_step_ArrayIndexOutOfBoundsException , P ,
st(H ,fr(M ,PC ,[num(int(_)),num(int(I )),ref(Loc )|_S ],L ),SF ),
stE(Hb ,frE(M ,PC ,Locb ,L ),SF )):-

instructionAt(M ,PC ,iastore),
heap_typeof(H ,Loc ,locationArray(Length ,refType(int))),
(I < 0 ; I >= Length ),
javaLang(JL ),
arrayIndexOutOfBoundsException(AIOOBE ),
heap_new(H ,P ,locationObject(className(JL ,AIOOBE )),Locb ,Hb ).

step(if_acmpeq_step_jump, _P ,
st(H ,fr(M ,PC ,[V1,V1|S ],L ),SF ),
st(H ,fr(M ,PCb ,S ,L ),SF )):-

instructionAt(M ,PC ,if_acmpeq(O )),
isReference(V1),
PCb is PC +O.

step(if_acmpeq_step_continue, _P ,
st(H ,fr(M ,PC ,[V1,V2|S ],L ),SF ),
st(H ,fr(M ,PCb ,S ,L ),SF )):-

instructionAt(M ,PC ,if_acmpeq(_O )),
next(M ,PC ,PCb ),
isReference(V1),
isReference(V2),
V1 =\= V2.

Figure A.6: Implementation in Ciao of the dynamic semantics of JVMLr (part
6)
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step(if_acmpne_step_jump, _P ,
st(H ,fr(M ,PC ,[V1,V2|S ],L ),SF ),
st(H ,fr(M ,PCb ,S ,L ),SF )):-

instructionAt(M ,PC ,if_acmpne(O )),
isReference(V1),
isReference(V2),
V1 =\= V2,
PCb is PC +O.

step(if_acmpne_step_continue, _P ,
st(H ,fr(M ,PC ,[V1,V1|S ],L ),SF ),
st(H ,fr(M ,PCb ,S ,L ),SF )):-

instructionAt(M ,PC ,if_acmpeq(_O )),
next(M ,PC ,PCb ),
isReference(V1).

step(if_icmp_step_jump, _P ,
st(H ,fr(M ,PC ,[num(int(I2)),num(int(I1))|S ],L ),SF ),
st(H ,fr(M ,PCb ,S ,L ),SF )):-

instructionAt(M ,PC ,if_icmp(Cmp ,O )),
semCompInt(Cmp ,I1,I2),
PCb is PC +O.

step(if_icmp_step_continue, _P ,
st(H ,fr(M ,PC ,[num(int(I2)),num(int(I1))|S ],L ),SF ),
st(H ,fr(M ,PCb ,S ,L ),SF )):-

instructionAt(M ,PC ,if_icmp(Cmp ,_O )),
next(M ,PC ,PCb ),
noSemCompInt(Cmp ,I1,I2).

step(if0_step_jump, _P ,
st(H ,fr(M ,PC ,[num(int(I ))|S ],L ),SF ),
st(H ,fr(M ,PCb ,S ,L ),SF )):-

instructionAt(M ,PC ,if0(Cmp ,O )),
semCompInt(Cmp ,I ,0),
PCb is PC +O.

step(if0_step_continue, _P ,
st(H ,fr(M ,PC ,[num(int(I ))|S ],L ),SF ),
st(H ,fr(M ,PCb ,S ,L ),SF )):-

instructionAt(M ,PC ,if0(Cmp ,_O )),
noSemCompInt(Cmp ,I ,0),
next(M ,PC ,PCb ).

step(ifnonnull_step_jump, _P ,
st(H ,fr(M ,PC ,[ref(_Loc )|S ],L ),SF ),
st(H ,fr(M ,PCb ,S ,L ),SF )):-

instructionAt(M ,PC ,ifnonnull(O )),
PCb is PC +O.

step(ifnonnull_step_continue, _P ,
st(H ,fr(M ,PC ,[null|S ],L ),SF ),
st(H ,fr(M ,PCb ,S ,L ),SF )):-

instructionAt(M ,PC ,ifnonnull(_O )),
next(M ,PC ,PCb ).

step(ifnull_step_jump, _P ,
st(H ,fr(M ,PC ,[null|S ],L ),SF ),
st(H ,fr(M ,PCb ,S ,L ),SF )):-

instructionAt(M ,PC ,ifnull(O )),
PCb is PC +O.

step(ifnull_step_continue, _P ,
st(H ,fr(M ,PC ,[ref(_Loc )|S ],L ),SF ),
st(H ,fr(M ,PCb ,S ,L ),SF )):-

instructionAt(M ,PC ,ifnull(_O )),
next(M ,PC ,PCb ).

step(iinc_step, _P ,
st(H ,fr(M ,PC ,S ,L ),SF ),
st(H ,fr(M ,PCb ,S ,Lb ),SF )):-

instructionAt(M ,PC ,iinc(X ,Z )),
next(M ,PC ,PCb ),
localVar_get(L ,X ,num(int(I ))),
semBinopInt(addInt,I ,Z ,R ),
localVar_update(L ,X ,num(int(R )),Lb ).

Figure A.7: Implementation in Ciao of the dynamic semantics of JVMLr (part
7)
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step(iload_step, _P ,
st(H ,fr(M ,PC ,S ,L ),SF ),
st(H ,fr(M ,PCb ,[num(int(I ))|S ],L ),SF )):-

instructionAt(M ,PC ,iload(X )),
next(M ,PC ,PCb ),
localVar_get(L ,X ,num(int(I ))).

step(ineg_step, _P ,
st(H ,fr(M ,PC ,[num(int(I ))|S ],L ),SF ),
st(H ,fr(M ,PCb ,[num(int(Ib ))|S ],L ),SF )):-

instructionAt(M ,PC ,ineg),
next(M ,PC ,PCb ),
negInt(I ,Ib ).

step(instanceof_step_ok1, P ,
st(H ,fr(M ,PC ,[ref(Loc )|S ],L ),SF ),
st(H ,fr(M ,PCb ,[num(int(1))|S ],L ),SF )):-

instructionAt(M ,PC ,instanceof(T )),
next(M ,PC ,PCb ),
assign_compatible(P ,H ,ref(Loc ),T ).

step(instanceof_step_ok2, P ,
st(H ,fr(M ,PC ,[ref(Loc )|S ],L ),SF ),
st(H ,fr(M ,PCb ,[num(int(0))|S ],L ),SF )):-

instructionAt(M ,PC ,instanceof(T )),
next(M ,PC ,PCb ),
\+ assign_compatible(P ,H ,ref(Loc ),T ).

step(invokespecial_step_here_ok, P ,
st(H ,fr(M ,PC ,S ,L ),SF ),
st(H ,fr(Meth ,PCb ,[],Lb ),[fr(M ,PC ,Sb ,L )|SF ])):-

instructionAt(M ,PC ,invokespecial(Mid )),
methodSignature_name(Mid ,methodName(MidCn ,_)),
resolve_method(P ,MidCn ,Mid ,Meth ),
method_signature(Meth ,MethSig ),
methodSignature_parameters(MethSig ,Param ),
length(Param ,NbParam ),
length(Args ,NbParam ),
append(Args ,[ref(Loc )|Sb ],S ),
heap_typeof(H ,Loc ,locationObject(Cn )),
method_signature(Meth ,Meths ),
methodSignature_name(Meths ,Methn ),
Methn = methodName(Methcl ,shortMethodName(’<init>’)),
method_signature(M ,Msig ),
methodSignature_name(Msig ,methodName(CCn ,_)),
( ( method_visibility(Meth ,protected),

subclass_name(P ,CCn ,Methcl ),
subclass_name(P ,Cn ,CCn ))

;
(method_visibility(Meth ,Visib ),
Visib \= protected)),

compatible_param(P ,H ,Args ,Param ),
method_body(Meth ,BMeth ),
bytecodeMethod_firstAddress(BMeth ,PCb ),
bytecodeMethod_localVarSize(BMeth ,Llength ),
RLlength is Llength - NbParam -1,
length(RL ,RLlength ),
init_localVar(RL ,RLlength ),
reverse(Args ,RL ,Lb1),
Lb = [ref(Loc )|Lb1].

Figure A.8: Implementation in Ciao of the dynamic semantics of JVMLr (part
8)



38 IMPLEMENTATION OF JVMLr SEMANTICS

step(invokespecial_step_NullPointerException , P ,
st(H ,fr(M ,PC ,S ,L ),SF ),
stE(Hb ,frE(M ,PC ,Locb ,L ),SF )):-

instructionAt(M ,PC ,invokespecial(Mid )),
methodSignature_parameters(Mid ,Param ),
length(Param ,NbParam ),
length(Args ,NbParam ),
append(Args ,[null|_Sb ],S ),
nullPointerException(NPE ),
javaLang(JL ),
heap_new(H ,P ,locationObject(className(JL ,NPE )),Locb ,Hb ).

step(invokestatic_step_ok, P ,
st(H ,fr(M ,PC ,S ,L ),SF ),
st(H ,fr(Mb ,PCb ,[],Lb ),[fr(M ,PC ,Sb ,L )|SF ])):-

instructionAt(M ,PC ,invokestatic(Mid )),
methodSignature_name(Mid ,methodName(CN ,_SMN )),
resolve_method(P ,CN ,Mid ,Mb ),
method_isStatic(Mb ),
method_body(Mb ,Bm ),
bytecodeMethod_firstAddress(Bm ,PCb ),
methodSignature_parameters(Mid ,Param ),
length(Param ,NbParam ),
length(Args ,NbParam ),
append(Args ,Sb ,S ),
bytecodeMethod_localVarSize(Bm ,Llength ),
RLlength is Llength - NbParam ,
length(RL ,RLlength ),
init_localVar(RL ,RLlength ),
reverse(Args ,RL ,Lb ).

step(invokevirtual_step_ok, P ,
st(H ,fr(M ,PC ,S ,L ),SF ),
st(H ,fr(Mb ,PCb ,[],Lb ),[fr(M ,PC ,Sb ,L )|SF ])):-

instructionAt(M ,PC ,invokevirtual(Mid )),
methodSignature_name(Mid ,methodName(MidCn ,_)),
resolve_method(P ,MidCn ,Mid ,Meth ),
method_signature(Meth ,MethSig ),
methodSignature_name(MethSig ,methodName(MethCln ,Methsmn )),
Methsmn \= shortMethodName(’<init>’),
Methsmn \= shortMethodName(’<clinit>’),
methodSignature_parameters(MethSig ,Param ),
length(Param ,NbParam ),
length(Args ,NbParam ),
append(Args ,[ref(Loc )|Sb ],S ),
heap_typeof(H ,Loc ,locationObject(Cn )),
method_signature(M ,Msig ),
methodSignature_name(Msig ,methodName(CCn ,_)),
( ( method_visibility(Meth ,protected),

subclass_name(P ,CCn ,MethCln ),
subclass_name(P ,Cn ,CCn ))

;
( method_visibility(Meth ,Visib ),

Visib \= protected)),
lookup(P ,Cn ,MethSig ,Mb ),
method_body(Mb ,Bm ),
bytecodeMethod_firstAddress(Bm ,PCb ),
bytecodeMethod_localVarSize(Bm ,Llength ),
RLlength is Llength - NbParam -1,
length(RL ,RLlength ),
init_localVar(RL ,RLlength ),
reverse(Args ,RL ,Lb1),
Lb = [ref(Loc )|Lb1].

Figure A.9: Implementation in Ciao of the dynamic semantics of JVMLr (part
9)
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step(invokevirtual_step_NullPointerException , P ,
st(H ,fr(M ,PC ,S ,L ),SF ),
stE(Hb ,frE(M ,PC ,Locb ,L ),SF )):-

instructionAt(M ,PC ,invokevirtual(Mid )),
methodSignature_parameters(Mid ,Param ),
length(Param ,NbParam ),
length(Args ,NbParam ),
append(Args ,[null|_Sb ],S ),
nullPointerException(NPE ),
javaLang(JL ),
heap_new(H ,P ,locationObject(className(JL ,NPE )),Locb ,Hb ).

step(ireturn_step_ok,_P ,
st(H ,fr(M ,PC ,[num(int(I ))|_S ],_L ),CallStack ),
st(H ,fr(Mb ,PCbb ,[num(int(I ))|Sb ],Lb ),SF )):-

instructionAt(M ,PC ,ireturn),
nonvar(CallStack ),
CallStack = [fr(Mb ,PCb ,Sb ,Lb )|SF ],
next(Mb ,PCb ,PCbb ),
method_signature(M ,MSig ),
methodSignature_result(MSig ,primitiveType(_)).

step(istore_step_ok, _P ,
st(H ,fr(M ,PC ,[num(int(I ))|S ],L ),SF ),
st(H ,fr(M ,PCb ,S ,Lb ),SF )):-

instructionAt(M ,PC ,istore(X )),
next(M ,PC ,PCb ),
localVar_update(L ,X ,num(int(I )),Lb ).

step(lookupswitch_step_ok1, _P ,
st(H ,fr(M ,PC ,[num(int(I ))|S ],L ),SF ),
st(H ,fr(M ,PCb ,S ,L ),SF )):-

instructionAt(M ,PC ,lookupswitch(_Def ,ListKey )),
member((I ,O ),ListKey ),
PCb is PC +O.

step(lookupswitch_step_ok2, _P ,
st(H ,fr(M ,PC ,[num(int(I ))|S ],L ),SF ),
st(H ,fr(M ,PCb ,S ,L ),SF )):-

instructionAt(M ,PC ,lookupswitch(Def ,ListKey )),
\+ member((I ,_O ),ListKey ),
PCb is PC +Def.

step(new_step_ok, P ,
st(H ,fr(M ,PC ,S ,L ),SF ),
st(Hb ,fr(M ,PCb ,[ref(Loc )|S ],L ),SF )):-

instructionAt(M ,PC ,new(C )),
next(M ,PC ,PCb ),
heap_new(H ,P ,locationObject(C ),Loc ,Hb ).

step(newarray_step_ok, P ,
st(H ,fr(M ,PC ,[num(int(I ))|S ],L ),SF ),
st(Hb ,fr(M ,PCb ,[ref(Loc )|S ],L ),SF )):-

instructionAt(M ,PC ,newarray(T )),
next(M ,PC ,PCb ),
0 =< I ,
heap_new(H ,P ,locationArray(I ,T ),Loc ,Hb ).

step(newarray_step_NegativeArraySizeException , P ,
st(H ,fr(M ,PC ,[num(int(I ))|_S ],L ),SF ),
stE(Hb ,frE(M ,PC ,Locb ,L ),SF )):-

instructionAt(M ,PC ,newarrayt(_T )),
I <0,
negativeArraySizeException(NASE ),
javaLang(JL ),
heap_new(H ,P ,locationObject(className(JL ,NASE )),Locb ,Hb ).

Figure A.10: Implementation in Ciao of the dynamic semantics of JVMLr (part
10)
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step(nop_step_ok, _P ,
st(H ,fr(M ,PC ,S ,L ),SF ),
st(H ,fr(M ,PCb ,S ,L ),SF )):-

instructionAt(M ,PC ,nop),
next(M ,PC ,PCb ).

step(pop_step_ok, _P ,
st(H ,fr(M ,PC ,[_V |S ],L ),SF ),
st(H ,fr(M ,PCb ,S ,L ),SF )):-

instructionAt(M ,PC ,pop),
next(M ,PC ,PCb ).

step(pop2_step_ok, _P ,
st(H ,fr(M ,PC ,[_V1,_V2|S ],L ),SF ),
st(H ,fr(M ,PCb ,S ,L ),SF )):-

instructionAt(M ,PC ,pop2),
next(M ,PC ,PCb ).

step(putfield_step_ok, P ,
st(H ,fr(M ,PC ,[V ,ref(Loc )|S ],L ),SF ),
st(Hb ,fr(M ,PCb ,S ,L ),SF )):-

instructionAt(M ,PC ,putfield(F )),
next(M ,PC ,PCb ),
heap_typeof(H ,Loc ,locationObject(Cn )),
defined_field(P ,Cn ,F ),
fieldSignature_type(F ,FT ),
assign_compatible(P ,H ,V ,FT ),
heap_update(H ,dynamicField(Loc ,F ),V ,Hb ).

step(putfield_step_NullPointerException , P ,
st(H ,fr(M ,PC ,[_V ,null|_S ],L ),SF ),
stE(Hb ,frE(M ,PC ,Locb ,L ),SF )):-

instructionAt(M ,PC ,putfield(_F )),
nullPointerException(NPE ),
javaLang(JL ),
heap_new(H ,P ,locationObject(className(JL ,NPE )),Locb ,Hb ).

step(putstatic_step_ok, P ,
st(H ,fr(M ,PC ,[V |S ],L ),SF ),
st(Hb ,fr(M ,PCb ,S ,L ),SF )):-

instructionAt(M ,PC ,putstatic(F )),
next(M ,PC ,PCb ),
isStatic(P ,F ),
fieldSignature_type(F ,FT ),
assign_compatible(P ,H ,V ,FT ),
heap_update(H ,staticField(F ),V ,Hb ).

step(return_step_ok, _P ,
st(H ,fr(M ,PC ,_S ,_L ),CallStack ),
st(H ,fr(Mb ,PCbb ,Sb ,Lb ),SF )):-

instructionAt(M ,PC ,return),
nonvar(CallStack ),
CallStack = [fr(Mb ,PCb ,Sb ,Lb )|SF ],
next(Mb ,PCb ,PCbb ),
method_signature(M ,MSig ),
methodSignature_result(MSig ,none).

step(saload_step_ok, _P ,
st(H ,fr(M ,PC ,[num(int(I )),ref(Loc )|S ],L ),SF ),
st(H ,fr(M ,PCb ,[num(int(Sh ))|S ],L ),SF )):-

instructionAt(M ,PC ,saload),
next(M ,PC ,PCb ),
heap_typeof(H ,Loc ,locationArray(Length ,primitiveType(short))),
0 =< I ,
I < Length ,
heap_get(H ,arrayElement(Loc ,I ),num(short(Sh ))).

Figure A.11: Implementation in Ciao of the dynamic semantics of JVMLr (part
11)
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step(saload_step_NullPointerException , P ,
st(H ,fr(M ,PC ,[num(int(_)),null|_S ],L ),SF ),
stE(Hb ,frE(M ,PC ,Locb ,L ),SF )):-

instructionAt(M ,PC ,saload),
nullPointerException(NPE ),
javaLang(JL ),
heap_new(H ,P ,locationObject(className(JL ,NPE )),Locb ,Hb ).

step(saload_step_ArrayIndexOutOfBoundsException , P ,
st(H ,fr(M ,PC ,[num(int(I )),ref(Loc )|_S ],L ),SF ),
stE(Hb ,frE(M ,PC ,Locb ,L ),SF )):-

instructionAt(M ,PC ,saload),
heap_typeof(H ,Loc ,locationArray(Length ,primitiveType(short))),
(I < 0 ; I >= Length ),
javaLang(JL ),
arrayIndexOutOfBoundsException(AIOOBE ),
heap_new(H ,P ,locationObject(className(JL ,AIOOBE )),Locb ,Hb ).

step(sastore_step_ok, _P ,
st(H ,fr(M ,PC ,[num(int(ISh )),num(int(I )),ref(Loc )|S ],L ),SF ),
st(Hb ,fr(M ,PCb ,S ,L ),SF )):-

instructionAt(M ,PC ,sastore),
next(M ,PC ,PCb ),
heap_typeof(H ,Loc ,locationArray(Length ,primitiveType(short))),
0 =< I , I < Length ,
i2s(ISh ,Sh ),
heap_update(H ,arrayElement(Loc ,I ),num(short(Sh )),Hb ).

step(sastore_step_NullPointerException , P ,
st(H ,fr(M ,PC ,[num(int(_)),num(int(_I )),null|_S ],L ),SF ),
stE(Hb ,frE(M ,PC ,Locb ,L ),SF )):-

instructionAt(M ,PC ,sastore),
nullPointerException(NPE ),
javaLang(JL ),
heap_new(H ,P ,locationObject(className(JL ,NPE )),Locb ,Hb ).

step(sastore_step_ArrayIndexOutOfBoundsException , P ,
st(H ,fr(M ,PC ,[num(int(_)),num(int(I )),ref(Loc )|_S ],L ),SF ),
stE(Hb ,frE(M ,PC ,Locb ,L ),SF )):-

instructionAt(M ,PC ,sastore),
heap_typeof(H ,Loc ,locationArray(Length ,refType(_RT ))),
(I < 0 ; I >= Length ),
javaLang(JL ),
arrayIndexOutOfBoundsException(AIOOBE ),
heap_new(H ,P ,locationObject(className(JL ,AIOOBE )),Locb ,Hb ).

step(swap_step_ok, _P ,
st(H ,fr(M ,PC ,[V1,V2|S ],L ),SF ),
st(H ,fr(M ,PCb ,[V2,V1|S ],L ),SF )):-

instructionAt(M ,PC ,swap),
next(M ,PC ,PCb ).

step(tableswitch_step_ok1, _P ,
st(H ,fr(M ,PC ,[num(int(I ))|S ],L ),SF ),
st(H ,fr(M ,PCb ,S ,L ),SF )):-

instructionAt(M ,PC ,tableswitch(Def ,Low ,High ,List _offset)),
(I < Low ; High < I ),
check((length(List _offset,N ), N = High - Low +1)),
PCb is PC + Def.

step(tableswitch_step_ok2, _P ,
st(H ,fr(M ,PC ,[num(int(I ))|S ],L ),SF ),
st(H ,fr(M ,PCb ,S ,L ),SF )):-

instructionAt(M ,PC ,tableswitch(_Def ,Low ,High ,List _offset)),
Low =< I ,
I =< High ,
check((length(List _offset,N ), N = High - Low +1)),
Nth is I -Low +1,
nth(Nth ,List _offset,O ),
PCb is PC +O.

Figure A.12: Implementation in Ciao of the dynamic semantics of JVMLr (part
12)
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